nouveau bandeau du PNST 2022

The Fast Gamma ray Spectrometer (FGS): a Multi-mission Instrument to Detect TGFs and Astrophysical Gamma ray Events
Melody Pallu  1@  , Philippe Laurent  2  , Damien Pailot  3  , Eric Bréelle  3  , Denis Perret  4  
1 : AstroParticule et Cosmologie, CNES
Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Physique Nucléaire et de Physique des Particules du CNRS, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Cité
2 : CEA- Saclay
Commissariat à l'énergie atomique et aux énergies alternatives
3 : AstroParticule et Cosmologie
Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Physique Nucléaire et de Physique des Particules du CNRS, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Cité
4 : Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics
Institut National des Sciences de l'Univers, Observatoire de Paris, Sorbonne Université, Centre National de la Recherche Scientifique, Université Paris Cité

Following Taranis' failure during its launch in 2020, an R&T development program has been started in 2021 by the team that developed the XGRE gamma-ray spectrometer onboard Taranis, at the Astroparticle and Cosmology (APC) laboratory (Paris, France). This program, funded by the French Space Agency (CNES), aims to develop a new gamma-ray spectrometer for space applications, and especially for the detection of Terrestrial Gamma ray Flashes (TGFs) from space. Aimed to be a multi-mission detector, Fast Gamma ray Spectrometer (FGS) can be adapted to different scientific objectives, using the same technology, namely a GaGG scintillator coupled with a Silicon Photo-Multiplier (SiPM) and an ASIC to read the signal. It is now based on 16 crystal pixels of 2 cm × 2 cm × 1 cm, but can be optimized to fit the mission purposes, FGS being used for different scientific objectives such as Gamma Ray Bursts (GRBs) and solar flares. In that sense, the GaGG scintillator type, the size of the scintillator pixels, and the number of pixels can be thus different for each mission. During the development, we consider TGFs, which are the most constraining events that we aim at, to define the detector characteristics: rapidity, energy range, timetag of photons. GaGG scintillators are newly developed non-hygroscopic scintillators, with a high light-yield and a fast decay time. We studied three different GaGG versions in the present work: a mean, a high spectral resolution, and a fast GaGG crystals. In order to validate the choice of the scintillator used, we show in the present work a comparison of their performances, and measurements within the ARRONAX proton accelerator to simulate the degradation due to the South Atlantic Anomaly (SAA) passages. FGS performances concerning TGF detection are also presented.


Personnes connectées : 1 Vie privée
Chargement...